

Sonja G. Hinish Structural Option Advisor: Dr. Hanagan

October 24, 2008

1100 Broadway Oakland, CA

Technical Report 2: Pro-Con Structural Study of Alternate Floor Systems

Table of Contents

Executive Summa	ary	•	•	•	•	•	•	•	•	•	•	1
Introduction	•	•	•	•	•	•	•	•	•	•	•	2
Floor Systems												
O verview	•	•	•	•	•	•	•	•	•	•	•	3
Typical Fra	ming	Plan		•	•	•	•	•	•		•	4
Steel Compo	osite	•		•		•		•	•	•	•	5-6
Longspan St	teel Jo	oists										7-8
Two-Way Po	ost-Ter	nsioned	Concre	ete Slab		•		•	•	•		9-10
Precast Hol	low-Co	ore Con	icrete l	Plank	•	•	•	•	•	•	•	11-12
Comparison and C	Conclu	ision	•	•	•	•	•	•	•	•	•	13

*Figures and Tables in the body of the report are labeled as follows: Table # Where # indicates the order of the table in the report.

Appendices

Appendix A: Ste	el Composite	•	•	•	•	•	•	•	•	•	A1-A10
Appendix B: Lor	ıgspan Steel Jo	ists	•	•	•	•	•	•	•	•	B1-B5
Appendix C: Two	o-Way Post-Ten	sioned	Concr	ete Sla	ab	•	•	•	•	•	C1-C11
Appendix D: Pre	ecast Hollow-Co	ore Co	ncrete	Plank	•	•	•	•	•	•	D1-D4
Appendix E: Cos	t Comparison	•	•	•	•	•	•	•	•	•	El

*Figures and Tables in the Appendix are labeled as follows: Table x.# Where x indicates the Appendix section and # indicates the order of the table in that section.

Executive Summary

1100 Broadway is a 20-story office building located in the Bay Area of Oakland, California. It contains 310,000 square feet of office space and 10,000 square feet of retail space at the ground level. The project is currently in the design development phase and construction is scheduled to begin in June of 2010. The gravity system is composite metal deck supported by composite steel beams and the lateral system is composed of steel moment and concentric braced frames.

For technical assignment two a structural study and comparison of four floor systems was performed. The current floor system, composite metal deck on composite steel beams, was redesigned for a typical bay of 1100 Broadway along with three alternative systems. The other options include longspan steel joists, a two-way post-tensioned concrete slab, and precast hollow-core concrete planks. The systems were compared based on depth, weight, cost, deflection, and constructability to determine their potential for use in 1100 Broadway.

The steel composite system is easy to construct, somewhat expensive compared to the other systems and is limited by deflections. Total depth of the system is 30.25". The longspan steel joists system depth totals 27". It's the lightest system, average cost but is also limited by deflections. The hollow-core concrete plank system supported by steel beams is 36" deep, very heavy and would be difficult to erect for the 20-story building.

After analyzing and comparing the four alternative floor systems it was determined that the most feasible option for 1100 Broadway is the two-way post-tensioned concrete slab. It allowed the total floor system depth to be reduced from 30.25" to only 9". Although the system is costly and heavy the potential savings due to reduced floor to floor height and possibly overall building height could outweigh the negatives. Further investigation of the post-tension system should follow including considering a one-way slab system.

Introduction

Page 2

Building Overview

1100 Broadway is a 20-story tower primarily used for offices but also provides shopping and entertainment at the ground level. Its architecture combines a new high-rise tower with the adaptive re-use of the Key System Building facade which houses a smaller portion of the building. The Key System Building is a 37,000 square foot historic office building which was damaged in the 1989 Loma Prieta earthquake and has remained vacant ever since. It is now a National Historic Landmark and its facade is incorporated into the design of the first eight floors of 1100 Broadway. Sustainability was a primary concern in the design of 1100 Broadway. It aims to achieve a LEED Gold rating by incorporating many green features into its design. It takes advantage of the opportunity to utilize Transit Oriented Development (TOD) due to its location directly above the 12th Street/City Center BART public transportation station. It features photovoltaic solar panels on the tower roof, a green roof on the Key System Building portion, and a rainwater collection, filtration and reuse system. The building envelope is comprised of high performance glass from floor to roof with large curtain walls on two of the four elevations. The high performance glass is "tuned" depending on which side of the building it's on: At the south and west facades, which receive more direct sun, the glass is slightly darker, at the north and east facades the glass is slightly clearer.

Existing Structural System

Typical office floors are $3^{1}/4^{"}$ light weight concrete fill on a $3^{"}$ 18 gage Verco W3 Formlock composite steel deck for a total thickness of $6^{1}/4^{"}$. Composite steel beams support the deck. Columns supporting the composite deck are standard structural steel wide flange sections. Mechanical areas are similar to the typical office floors with the exception of normal weight concrete fill in place of the lightweight fill on composite metal deck. The roof system on the tower portion of the structure consists of the same composite steel deck system as the typical office floors.

Wind and earthquake forces are resisted by a dual system composed of Steel Special Concentric Braced Frames located around and across the building core and Special Moment Resisting Frames (SMRF) at the building perimeter. Braces are wide flange members with welded connections. Diagonal bracing member sizes range from W12x96 to W14x132. Member sizes of the moment resisting frames range from W24x94 to W24x207. Lateral forces are distributed to the SMRF at the perimeter of the building and the loads are distributed to surrounding members based on their relative stiffnesses with a higher percentage of the load being distributed to the stiffer members.

The main tower of the building is supported by 110 ton, 14"-square, driven prestressed precast concrete piles beneath a reinforced concrete mat foundation. The structure utilizes 117 existing 14" square piles and requires 334 new 70'-0" long prestressed concrete piles. The concrete mat slab is 5'-9" thick with #11 bars spaced at 12" 0.C. each way on both faces. The remaining portion of the foundation is a 9" thick reinforced concrete slab with #5 bars spaced at 12" 0.C. Framing within Key System portion of the structure is supported by 6'-0" square spread footings.

Floor Systems: Overview

A36'x31' exterior bay typical of levels 10 - roof was analyzed and redesigned as the following types of floor systems:

- 1. Steel Composite (Current System)
- 2. Longspan Steel Joists
- 3. Two-Way Post-Tensioned Concrete Slab
- 4. Precast Hollow-Core Concrete Plank

The four systems were evaluated on depth, weight, cost, deflection control, constructability and fireproofiing and compared with the current steel composite system to determine if they were feasible for use in 1100 Broadway. See Figure 1 on page 4 for the typical floor plan indicating the bay analyzed for redesign.

A summary of the advantages and disadvantages of each system is provided after each alternative design. For this assignment only gravity loads were required for calculations, including a superimposed dead load and a live load. The self-weight of each system varies. See Table 1 below for design loads used for this assignment.

IBC 2006 was referenced for fire safety and required horizontal assembles for 1100 Broadway to meet a 2-hour fire-resistance rating. A Live load deflection criterion of L/360 and a total load deflection criterion of L/240 were considered in the design of the floor systems.

Table 1: Loads used in design of floor systems

Loads used in design	
Superimposed dead load for MEP, finishes, misc.	20 psf
Live load for corridors above first floor (ASCE 7-05)	80 psf*

* ASCE 7-05 requires a minimum live load of 100 psf for lobbies and first floor corridors and a live load of 80 psf for corridors above the first floor. Typical floors are open office plans with no designated corridors and therefore a live load of 80 psf was used in calculations in lieu of the 50 psf office load to be conservative since partition layout in the offices are subject to change.

Typical Framing Plan

Figure 1

Typical Framing Plan for Levels 10 - Roof. The typical bay highlighted in red will be analyzed for the 4 different floor systems.

Floor Systems: Steel Composite

1100 Broadway's current floor system is composite metal deck supported by composite steel beams. The assembly consists of a 3", 18 gage, W3 Verco Formlok deck with 3 1/4" lightweight concrete topping for a total slab depth of 6 1/4". A check was performed on the current design of the W24x55 girder supporting the east end of the beams with 31 evenly spaced shear studs to verify that the available flexural strength of the composite system could be achieved between the points of zero and maximum moment which is between the supports and location of beams framing in. The current design is sufficient and the maximum moment does not exceed the available flexural strength of the composite system.

Using the composite deck properties and the loads from Table 1 the supporting composite members were redesigned. A redesign of the current system was necessary to serve as a reference for the alternative systems to compare with. The systems can now be directly compared because they were designed using all of the same loads and assumptions. Deflection due to the total load was the controlling design parameter for the beams and girders. The redesign consists of W21x55 beams with 24 evenly spaced shear studs. A W24x55 girder supports the east ends of the beams and the west ends of the beams are supported by a W24x84 girder. The shear studs are concentrated in the 10.33 feet on each end of the girders in order to achieve the full strength of the system at the points of maximum moment where the beams frame into the girder. The minimum required shear studs are evenly spaced in the middle 10.33 feet of the girder. The minimum required shear studs are evenly spaced for the W24x55 girder on the east end which is the same. The placement of shear studs along the redesigned members is more efficient because the current design calls for uniformly placed studs causing more studs to be placed on the center portion of the girder than are required. This is usually typical of members with a uniformly distributed load versus two point loads. A comparison of the current design and the redesign can be seen below in Figures 2 and 3 respectively.

The 6.25" slab/deck depth with 24" deep supporting composite members gives a total system depth of 30.25". For system properties see Table 2 below. The assembly meets the required 2-hour fire rating and does not require additional fireproofing on the deck but the supporting composite steel members will require fireproofing. No changes to the lateral system are necessary.

Table 2	
Steel composite	system properties

Deck	3", 18 gage, W3 Verco Formlok deck		
Slab depth	6.25"		
Total depth	30.25"		
Concrete	lightweight, 115 pcf, f'c=3000 psi		
Shear Studs	3/4" diameter, 5" length		

Floor Systems: Steel Composite

A brief summary of the advantages and disadvantages of the steel composite system as the relate to 1100 Broadway are listed below. A comparison of all four systems can be found at the end of the report.

Advantages :

Depth:	30.25″
Weight:	58.8 psf - deck and slab assembly (48.8 psf) + steel framing (10 psf)
Cost:	\$32 per square foot
Constructability:	Simple and easy system to construct
Lateral System:	No changes to current lateral system

Disadvantages:

Fireproofing:	Required fireproofing on supporting beams can be expensive and time consuming
Deflection:	Deflection due to total load controlled design of supporting members

Conclusion for use in 1100 Broadway: High feasibility

Floor Systems: Longspan Steel Joists

Longspan steel joists were considered as alternative floor system for 1100 Broadway. The deck and slab were designed referencing the United Steel Deck Design Manual and the joists were designed referencing the CMC Joist and Deck Catalog. A 1" UFX1 form deck with a 3" lightweight concrete topping was chosen for the deck/slab system. Joists are evenly spaced at 5.17' over the 31' length and span 36' in the East/West direction. See Table 3 below for system properties. 24LH08 joists provide the most economical design but 20LH09 joists may be used if there are restrictions on the floor depth. The 24" depth of the joists with a 3" thick deck/slab system amount to a total system depth of 27". A W24x76 beam will support the west end of the joists and a W21x55 beam will support the East end of the joists. See figure 4 below for the framing layout. The supporting beams were sized to meet industry accepted values for deflection limits. The slab/deck assembly meets the required 2-hour fire rating but spray applied fire resistive materials (SAFRM) must be applied to the steel joists in order for the total floor system to meet the 2-hour fire rating. Changing 1100 Broadway's floor system to longspan steel joists would not have any significant impact on the lateral system. The current system of steel moment and braced frames could remain as the lateral system with the longspan steel joist floor system.

24LH08 joist system	properties
Joist depth	24"
Deck/Slab depth	3"
Total depth	27"
Joist weight	18 plf

Table 3

Figure 4 24LH08 steel joist design for the 36'x31' typical bay spaced at 5.17' O.C.

Floor Systems: Longspan Steel Joists

A brief summary of the advantages and disadvantages of the longspan steel joist system are listed below.

Advantages		
Wei	ght:	31 psf - deck (1.5psf) + slab (24 psf) + joists (0.5psf) + steel framing (5 psf)
Cost	•	\$26 per square foot
Late	eral:	No changes to the lateral system required
Disadvanta	ges:	
Dept	th:	27″
Fire	proofing:	Required fireproofing steel joists and supporting beams can be expensive and time consuming
Defl	ection:	Supporting beam sizes increased due to deflection
Vibr	ations:	Relatively high

Conclusion for use in 1100 Broadway: Low feasibility

Floor Systems: Two-Way Post-Tensioned Concrete Slab

A Two-way post-tensioned concrete slab was considered as an alternative floor system. For simplicity in the preliminary analysis the post-tensioning tendons were only designed in one direction. The design features a 9" thick normal weight concrete slab with 1/2" diameter banded tendons. See Table 4 for system properties. The banded tendons were designed in the East/West direction across the 36' span and run across the column lines. Twenty-two banded tendons are required to adequately stress the slab. The effective prestress force of the 22 tendons is approximately 585 kips. To avoid overstressing the slab fewer tendons were used than originally designed and additional mild steel reinforcing may be required. Twelve #4 steel reinforcing bars are required at the first interior support where the moment is largest and four #4 bars are required at the exterior support. See Figure 5 for a section of the system. The uniform tendons will span the North/South direction but were not designed in this analysis. Deflections were not calculated due to the complexity of hand calculations and lack of software capable of post-tension design but are normally minimal in post-tensioned systems. The slab meets the cover requirements from IBC 2006 to acquire a 2-hour fire rating and no additional fireproofing is required. See Figure 6 below for the layout of the post-tensioned system. Switching to a post-tensioned slab will require changes to the lateral system. The post-tensioned slab will be able to handle a portion of the lateral forces but shear walls or concrete moment frames will be needed for additional resistance to the lateral loads. Locations of openings in the post-tensioned slab are critical. Unlike openings in a typical mild steel reinforced slab, cutting through a tendon could cause the entire post-tensioned floor slab to fail.

Floor Systems: Two-Way Post-Tensioned Concrete Slab

A brief summary of advantages and disadvantages of the two-way post-tensioned concrete slab system are listed below.

Advantages :

Disadv

Depth:	9″
Vibrations:	Very limited
Cost:	\$24 per square foot
Deflection:	Not calculated but kept to a minimum in post-tensioned design
Fireproofing:	None Required
antages:	
Constructability:	Difficult to properly place and stress tendons. Opening locations are critical.

Constructability:	Difficult to properly place and stress tendons. Opening locations are critical.
Weight:	115 psf
Lateral:	Post-tensioned slab will require an alternate lateral system of either concrete
	moment frames or shear walls.

Conclusion for use in 1100 Broadway: High feasibility

Page <u>11</u>

Floor Systems: Precast Hollow-Core Concrete Plank

A precast hollow-core concrete plank system was the final floor system considered for 1100 Broadway. Concrete plank size was determined using the 6th Edition of PCI Handbook. A 4'-0" x 10" normal weight concrete plank with 2" topping was chosen for the design. See Figure 7 for a section view of the plank and Table 5 for system properties. Nine hollow-core planks fit within the 36' span. Steel beams to support the planks were designed using AISC 13th Edition Manual of Steel Construction. The beam supporting the north end of the planks is a W24x176 while the beam supporting the south end is a W24x146. For the plank layout and beam locations for the typical bay see Figure 8 below. The total system depth including the steel beams is 36" which exceeds the composite system depth by more than one foot. The precast concrete planks consider deflection in their design and meet fireproofing requirements for a 2-hour fire rating. The supporting beams also meet deflection requirements but will require SAFRM to achieve a 2-hour fire rating. The hollow-core concrete planks will be capable of resisting a significant portion of the lateral load. Steel moment frames or concrete moment frames are options for lateral systems. Locations of openings in the planks are critical and can be costly to perform. Engineering approval should be obtained before cutting any openings. The openings can be core drilled or cut with a concrete saw but should be cut only after the planks have been erected. Erection of the hollow-core plank system may be costly for the 20-story height.

Concrete topping	2" normal weight
Plank width	4'-0"
Plank depth	10"
Plank+topping weight	370 plf
Plank concrete	normal weight, f'c=5000 psi
Beam depth	24"
Total denth	36"

Table 5 Hollow-core concrete plank system properties

Figure 7 Hollow-core concrete plank section

Figure 8 Hollow-core plank layout for typical 36'x31' bay

Floor Systems: Precast Hollow-Core Concrete Plank

A brief summary of advantages and disadvantages of the precast hollow-core concrete plank system are listed below.

Advantages :

Cost:	\$24 per square foot
Deflection:	Precast hollow-core planks were designed for deflections
Fireproofing:	None Required
Lateral:	Concrete planks will handle a portion of the lateral load but steel or concrete
	moment frames will also be necessary

Disadvantages:

Depth:	36″
Weight:	105 psf
Constructability:	Location of openings are critical and may be costly to perform

Conclusion for use in 1100 Broadway: Low feasibility

Comparison and Conclusion

Comparison:

A comparison of the floor systems as they relate to 1100 Broadway can be seen below in Table 6.

Table 6	
System	Comparison

	Steel Composite	Steel Joists	Post-Tensioned Slab	Hollow-Core Plank
System Depth (in.)	30.25	27	9	36
Weight (psf)	58.8	31	115	105
Cost (per sq. ft.)	\$32.00	\$26.00	\$24.00	\$24.00
Deflections	Medium	High	Low	Low
Constructability	High	Medium	Low	Low
Fireproofing	Supporting Beams	Supporting Beams	Not required	Not required
Feasibility	High	Low	High	Low
				·
Potential for more				
in depth investigation	Yes	No	Yes	No

Conclusion:

The two-way post-tensioned concrete slab is the best alternative floor system studied for 1100 Broadway. The post-tensioning of the system makes it possible to reduce the total floor depth from 30.25" with the composite system to 9". Post-tensioned slab systems are capable of achieving relatively shallow depths for long spans which was exemplified in the redesign of the 36' span. With the reduction in floor depth comes the potential for reduction in the overall height of the building due to the decreased floor to floor height. This potentially makes the post-tensioned design a very economical alternative for 1100 Broadway. Deflections are also limited with post-tensioned design due to the upward force exerted by the tendons.

The main disadvantages of the system are its heavy weight, low constructability, and location of openings being critical. The increased weight of the system will likely impact the foundations and will require further evaluation. Placing the tendons and concrete so that the tendons follow the appropriate profile can sometimes be difficult and properly stressing the tendons can also be challenging.

The post-tensioned system will require an alternative lateral system. The post-tensioned slab will be able to resist a portion of the lateral load but either concrete moment frames or shear walls will also be necessary to resist the lateral loads.

Hand Calculation: Check current design of girder supporting East ends of beams

	Check current design: W24x55 girder on East Side
(Deck/Slab properties : Reference United Steel Deck Design Manual and Catalog of products
	# 36-0" + For 18 gage, 3" metal deck w= 2,8psf.
	W24×55 m 31/4" Lightweight Slab w= 46 pst
	S. I dead load w= 20 psf
	$W_{d} = 68.8 \text{ psf}$ $W_{d} = 68.8 \text{ psf}$ $W_{d} = 68.8 \text{ psf}$ live load $W_{L} = 80 \text{ psf}.$
	H w24x55 I + Point loads on the girder from W24x55 beams
	$P_{u} = (1.20 + 1.6L)(18' \times 10.33)$ = $(1.2(68.8 \text{ pst}) + 1.6(80 \text{ psf}))(18' \times 10.33')$
	40.2k $40.2k$ = $39.15k$ each.
	beam weight = $55 p \text{ if } \pm 18 \text{ ft} \approx 1 \text{ K}$.
	4 10,33' 1 10,33' 1 10,33' 1 10,33' 1 VOZK Properties of W24×55 Girder
	Slean A=16.2 in ² · Reference 13th d= 23.6" Edition Alsc Steel Manual
	tw = 0.395'' bf = 7.01'' 31 Shear Studs
	Moment. Moment. Moment. Moment. Molson S3L or H4L studs. LD Drawing notes specify Nelson S3L or H4L studs. LD Assumed 3/4" d
	. Mu = 415.3K Shear Stud Capacity:
	Table 3-21, Deck runs Parallel to girder. For liw, conc, ft=3ksi, $\frac{4}{2}$, $2^{1.5}$ Qn= 17.1K/stud.
	ZQn = sum of nominal strengths of shear connectors between the point of max (+) moment. (@ point load due to beams, 10.33') and point of zero moment (support).
	Therefore, according to the current design of 31 studies = 1 studies, in the first 10.33' there will be 10 evenly spaced studies.
(10 studs × 17.1 K/stud = 171 K = 2Qn.

Appendix A: Steel Composite

Hand Calculation: Check current design of girder supporting East end of beams

$$\frac{1}{2} = \frac{1}{2} = \frac{1}$$

Hand Calculation: Design of supporting beams

Redesign of current Composite System. For Deck/Slab Properties reference United Steel Deck Design Manual design Reference 13th Edition Also Steel Manual. For beam 36 TT 18 gage, 3" metal Deck 31/4" lightweight Conc. Slab. Deck/slab: W= 2,8 psf + 46 psf = 48,8psf S.I. Dead = 20 psf 31-0" W = 80 psf. Wn = 1,20 + 1.6L 010,33 = 1.2 (68,8 psf) + 1.6(80psf) W = 210,56 psf. Design of composite beams supporting composite deck. Max unshored Span= 13,26' therefore need beams at 3rd Points of span. Wu = 210.56 psf (10,33 Ft) Wu = 2175 plf. 31 = 10,331 spacing. $M_{\rm W} = wl^2 = 2175 \, \rho IF (36')_{1000}^2 = 352.4 \, \text{ft-k}$ Deff=min { Spany = 32 = (108") Spacing= 10,33'= 124" Assume a=1" * beff= 108" y= 6,25" - 1/2 = 5,75" → 5.5" conserv. 13.75" Try W18 × 3 5: · deck runs 9Mp= 249 ft-K. perpendicular to beams. Ampc = 411 st-K san= 194 K. @P.N.AG. · ribs spaced @ 12" Check Assumption that a=1.0". . nox # of studs a= <u>EQn</u> = <u>194 K</u> 0,85fk beff 0,85(3KSi)(108") = 0.71" <1" - Assumption conservative. = 36 for this span. Mu = 352.4 ft-K 2 411 ft-K = & Mpc .. or -> still need to check deflections.

Hand Calculation: Design of supporting beams

Hand Calculation: Design of supporting beams

Check Live (and Deflection':

$$P_{L} = 5W_{L} \frac{L^{4}}{384 \text{ tr} 1} = \frac{5(80 \text{ ps} \times 10.334 \text{ tr})(3644)^{4}}{384(29,200,000)(7841\text{ tr})^{3}} = 1.09"$$

$$P_{max} = \frac{1}{360} = \frac{3C'_{-1}12''_{-4}}{360} = 1.2"$$

$$P_{L} = 1.09" < 1.2" \text{ so } 0K'$$
Chech deflection due to total load :

$$D_{T} = \frac{5W_{L}L^{4}}{37461} = \frac{5(68.8+80)(10.33)(3664)^{4}(1728)}{384(25,000,000)(984)\text{ m}^{4}} = 2.09"$$

$$A_{max} = \frac{1}{240} = \frac{36' \cdot 12''_{-1}t}{3} = 1.8"$$

$$\Delta_{T} = 7.04 > 1.8" = A_{max} = 1.8 \text{ so}$$

$$T = \frac{5W_{L}L^{4}}{384(29,000,000)(1.8")} = 1113 \text{ in } 4$$

$$F_{1nd} \text{ new } \text{ J'regist =} \frac{5(68.8+80)(10.33)(3664)^{4}(1728)}{384(29,000,000)(1.8")} = 1113 \text{ in } 4$$

$$F_{1nd} \text{ new } \text{ J'regist =} \frac{5(68.8+80)(10.33)(3664)^{4}(1728)}{384(29,000,000)(1.8")} = 1113 \text{ in } 4$$

$$F_{1nd} \text{ new } \text{ J'regist =} \frac{5}{384(29,000,000)(1.8")}$$

$$Choose W21855 \rightarrow \text{ Tx} = 1140 \text{ m}^{4}$$

$$QMp = 47364 \text{ tr} > 352.4 \text{ ft-k} = Mu \text{ is ok}$$

$$E a_{1n} = 203 \text{ k.} \Rightarrow regist # Shean \text{ stude} = 203t \text{ so } 12 \text{ stude} \text{ so } 12.5 \text{ so$$

Appendix A: Steel Composite

Hand Calculation: Design of girder supporting East ends of beams

Hand Calculation: Design of girder supporting East ends of beams

Acong. Limit = 1" b/c Span = 31ft > 30 ft,

$$I_{WL1 \times 55} = |140 \text{ int} \qquad \text{from deed load} = (765.7 \text{ plf})(18 \text{ ft})/\text{mod}}$$

$$A_{cong.} = \frac{PL^3}{28E1} = (3.778 \text{ K})(31 \text{ ft})^3(128) = 0.777" < 1" : 0K.$$

$$A_{cong.} = \frac{PL^3}{38E1} = (3.778 \text{ K})(31 \text{ ft})^3(128) = 0.777" < 1" : 0K.$$

$$Chech. Inve. load. Deflection:
$$Limit = \frac{L}{300} = \frac{31^3 \times 12^7/41}{360} = 1.03" = D_{max}.$$

$$B_{L} = \frac{PL^3}{360} = \frac{(826.4916)(1844/1000)(311')^3(1728)}{28(125)0000)(1140 \text{ in}^{N})} = 0.83"$$

$$A_{L} = 0.83" < 1.03" = D_{max}.$$

$$Check. deflection. duc. to tratal load;
$$\Delta_{max} = \frac{L}{240} = \frac{314 \times 0.724}{740} = 1.55"$$

$$D_{0} = \frac{(765.9 + 826.4942)(1844)/1000}{28(124)9000)(1140 \text{ in}^{N})}$$

$$D_{0} = d = \frac{(7165.9 + 826.4942)(1844)/1000}{28(124)9000}(1140 \text{ in}^{N})}$$

$$D_{0} = d = 1.6" > 1.55" = \Delta_{max}. Mo \quad g. ord.$$

$$determint. I.mgd:$$

$$I.mgk = (726.7 + 826.4942)(1844)/1000 (3164)^3(1728) = 11/72.21n4' = 28(229, 000)(1/55")$$

$$Choose W24 \times 55$$

$$\Phi \text{ Mpc} = .7217 \text{ fe-K} > 232.5 \text{ feK} = mu_{consth}$$

$$\phi \text{ Mpc} = .7217 \text{ fe-K} > 4117 \text{ ff-K} = mu.$$

$$EQn = 203K.$$
Shean Strode Paged: Table 3-21, Deck. Parallel, "S 71.5, 34" $f, fx : 3, k.u.e.}$$

$$\frac{EQn}{360} = \frac{723^{2}}{17/16!} = 12 \text{ on each side up to mu.}$$

$$\frac{(na)}{32(17.10)} = 1000 \text{ missioning in midsection} = min \quad Savistic 50"$$

$$\frac{(na)}{32(17.10)} = 1000 \text{ missioning in midsection} = min \quad Savistic 50"$$$$

-

Technical Report 2

Page A8

Appendix A: Steel Composite

Hand Calculation: Design of girder supporting West end of beams

Design of girder supporting (usst end of beams: (15 nove fast of the term damping)
Point loads on our den from beams. (15 nove fast of the term damping)
Point loads on our den from beams. (15 nove fast of the term damping)
Point loads on our den from beams. (15 nove fast of the term damping)
Point loads on our den from beams. (15 nove fast of the term damping)
Point loads on our den from beams. (15 nove fast of the term damping)
Point loads on our den from beams. (15 nove fast of the term damping)
Point loads on our den from beams. (15 nove fast of term damping)
Point loads on our dend for the term damping design,
Start with regid Ir., (165,00) (1.55")
I regid = (166,00,000) (1.55")
I regid = (166,00,000) (1.55")
I regid = (166,00,000) (1.55")
I regid = 2149 int. Try W 24x84 Ty = 2570 cm³
down = 309 K.
Deflection due to use concrete during
construction:
Pu = [1.2(765,00] (1.55")
I regid = (2165,00] (1.55")
Macenst. = Rut a = 41.3K (10.33 feet) = 42.07 ft-K.
Macenst. = Rut a = 41.3K (10.33 feet) = 42.07 ft-K.
Macenst. = (105,00) (2370 int)
Live load Oeflection: Armax =
$$\frac{1}{200} = \frac{31012}{200} = 1.03"$$

Arma = (226,400) (2370 int)
Live load Oeflection: Armax = $\frac{1}{200} = \frac{3102}{200} = 1.03"$
Arma = 0.73" < Armay = 1.03" : 0K.
Check accomption that a=1"
 $a = \frac{2001K}{0.55(5)(92")} = \frac{3001K}{1.516} = 35000 fion Irecorrect.
 $y = 200576$ the for $x = 0.73$ " < $y = 200576$ int] conserved.
 $y = 200576$ is still conserved.$

therefore ok. SONJA HINISH - 1100 BROADWAY

Page A9

Appendix A: Steel Composite

Hand Calculation: Design of girder supporting West end of beams

Determine # Shear study required: Table 3-21, Deck parallel, W/71,5, $\frac{ZQn}{Qn} = \frac{369}{17.11 \text{k}} = 19 \text{ studo each side} \qquad Qn = 17.11 \text{k}.$ min, center to center spacing of studes along member = 6xdiana = 6(74") check that 19 studs can be placed in 10,33 feet: - 4.5" 10,33 feet x Rin/ft = 123,96" = 27,5 : 19 studs will 4,5" spucing fit in 10,33 feet, Max spacing @ mid section of beam = 3 feet. >> place 4 studs in mid section, (19) Designo Final W21X 55 (24) (2) (6) WE1X55(24) E N24x5S E W21 ×55 (24) (2) (6) W21×55(24) Ι

Appendix A: Steel Composite

Tables from the United Steel Deck Design Manual

Table A.1

Maximum uniform live service load

1000	3 x	12"	DECI	ĸ	F _y = 3	33ksi	f	'_ = 3	ksi	11	5 pc	f coi	ncref	te	
1	-	-		-		L, Unif	orm Li	ve Ser	vice L	oads, p	osf *		Contraction of	Contraction of the	
	Slab Depth	¢Mn in.k	9.00	9.50	10.00	10.50	11.00	11.50	12.00	12.50	13.00	13.50	14.00	14.50	15.00
and the second	5.50	80.96	385	345	305	275	250	225	205	185	170	155	140	130	120
e	6.00	92.32	400	390	350	315	285	255	235	210	195	175	160	150	135
5	6.25	98.00	400	400	370	335	300	275	245	225	205	190	170	160	145
19	6.50	103.68	400	400	395	355	320	290	260	240	220	200	180	165	155
0,	7.00	115.04	400	400	400	395	355	320	290	265	240	220	205	185	170
8	7.25	120.72	400	400	400	400	370	335	305	280	255	235	215	195	180
-	7.50	126.40	400	400	400	400	390	355	320	290	265	245	225	205	190
120	8.00	137.76	400	400	400	400	400	385	350	320.	290	265	245	225	205

Table A.2 Maximum unshored span

					CC	MPOS	TE PR	OPERTI	ES				
	Slab Depth	φM _{nf} in.k	A _c in ²	Vol. ft ³ /ft ²	W psf	S _c in ³	l _{av} in ⁴	φM _{no} in.k	φV _{nt} Ibs.	Max.u 1 span	nshored s 2span	pans, ft. 3 span	A _w
-	5.50	80.96	37.6	0.333	38	1.94	9.1	54.28	5250	11.48	13.61	14.07	0.0
	6.00	92.32	42.0	0.375	43	2.23	11.6	62.43	5870	10.94	13.07	13.51	0.0
9	6.25	98.00	44.3	0.396	46	2.38	13.0	66.67	6180	10.70	12.83	13.26	0.0
0	6.50	103.68	46.6	0.417	48	2.53	14.5	70.99	6510	10.48	12.59	13.01	0.0
0	7.00	115.04	51.3	0.458	53	2.85	17.9	79.88	7170	10.07	12.16	12.57	0.0
01	7.25	120.72	53.8	0.479	55	3.01	19.8	84.42	7510	9.88	11.96	12.36	0.0
8	7.50	126.40	56.3	0.500	58	3.17	21.8	89.03	7860	9.71	11.77	12.16	0.0
-	8.00	137.76	61.3	0.542	62	3.51	26.2	98.39	8570	9.43	11.42	11.80	0.0
	8.25	143.44	63.9	0.563	65	3.68	28.6	103.15	8930	9.33	11.25	11.62	0.0
	8.50	149.12	66.6	0.583	67	3.85	31.1	107.94	9300	9.23	11.09	11.46	0.0

Table A.3 Fire Rating

1000	D913	N	3 1/4 LVV	BL,LF15,LF2,LFC2,LF3,LFC3
	D916	N	4 1/2 NW	BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC
	-× D916	N	3 1/4 LW	BL, BLC, LF15, LFC1, LF2, LFC2, LF3, LFC3, NL, NLC
	D916	N	3 1/2 LW	BL,BLC,LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC
	D918	N	4 1/2 NW	LF15,LFC1,LF2,LFC2,LF3,LFC3,NL,NLC

-Meets 2-hour fire rating requirement and requires no additional fire proofing on deck

Appendix B: Longspan Steel Joists

Hand Calculation:

Reference: United Steel Deck Design Manual and catalog of products. · Choose Deck, Slab thickness and spacing: Try 1" (UF1X) Form Deck with a 3" light-weight concrete Slab. Total Thickness = 3". Self-weight of slab = (3"-11/2) + 115pcf = 24 psf. 17 1/4 Joist Spacing: over 31 ft length > Almost 5' even spacing 31 ft = 5.17' spacing Determining load: LRFO ; WLL = 80 psf. Wy = (1.2 Wor + 1.6 Wee) WDI = WSlab + WS.I. Ww = 1.2 (44 psf) + 1.6(80 psf) = 24psf + 20pst Wa = 181 psf = 44 psf For UF1x deck, Wa = 181 psf -> 22 gage deck is sufficient. Wu = 181 psf L Wsate = 193 psf for Single Span 191 psf for double span · Design Longspan Steel Joists! Reference CMC Joist and Deck Catalog. Wu= [1.2(44psf) + 1.6(80psf)] + 5.17 feet = Wu = 935 plf For the 36' span choose 20LH09 or 24LH08 201409 weighs 21 plf. - Wsafe = 954 plf > 935 plf : OK. 24LHO8 weighs 18 plf - Wsafe = 933plf, only slightly less than 935 plf. (S.I. DL = 20 psf is conservative so 24LH08 Joists will be sufficient.) 24LH08 is more economical because it's lighter, but choose 20LH09 if depth is restricted.

Appendix B: Longspan Steel Joists

Hand Calculation:

Design of beams supporting the 24LHOS steel Joists! Wpc= 44 psf (previous page) Will = 80 psf Wu = 1,2 (44psf) + 1.6 (80 psf) = 181 psf. (Joists spaced @ 5.17'a.c.) BEAMA 0 31-0" Reference AISC 13th Edition Steel Manual Table 3-2. 361-0" Size Beam D: Trib. width = (15'+18') = 33 feet.= l2 Mu = Wulll = (181 pot)(33')(31')2 = 718 ft-K => choose W 24x76 dmp= 750 > 718= Mu Beam @ W24×76 Size beam (B) Trib width = 18' $M_{U} = (181psf)(18')(31')^2 = 392 \text{ ft}-k$ => chouse W21×48 OMO = 398 > 392 = Mu Beam B W21×48 → After checking deflections on next page, A W21×55 is required. · · Beam B = W21 ×55

Appendix B: Longspan Steel Joists

Hand Calculation:

Deflection Check of beams supporting 242408 Joists
AU max =
$$\frac{L}{360} = \frac{31' \times 12''44}{360} = 1.03''$$

Auto max = $\frac{L}{240} = \frac{31' \times 12''44}{240} = 1.55''$
Beam @ W24 x76: $T x = 2100 \text{ in}^4$
Auve = $\frac{5w_L L^4}{384} = \frac{5(80 \text{ psf} + 33 \text{ tr})(31')^4 (1728 \text{ m}^3/2^3)}{384(29,000,000)(2100)^{n'}} = 0.90''$
 $\frac{(\Delta_L = 0.9'' < 1.03'' = \Delta_{max} \div 0KV)}{(\Delta_L = 0.90'' < 384(29,000,000)(2100)^{n'}}$
Deoted = $5(\frac{80 \text{ psf}}{10})(\frac{33 \text{ fr}}{10})(\frac{31}{10})(\frac{1728}{128}) = 1.08''$
 $\Delta_L = \frac{5(\frac{80 \text{ psf}}{10})(\frac{13}{10})(\frac{1728}{128}) = 1.08''$
 $\Delta_L = \frac{5(\frac{80 \text{ psf}}{10})(\frac{13}{10})(\frac{1728}{128}) = 1.08''$
 $\Delta_L = \frac{5(\frac{80 \text{ psf}}{100})(\frac{13}{10})(\frac{1728}{128}) = 0.91''$
 $\Delta_L = 1.08''' > 1.03'' \Delta_{Lmax}$ i Must select larger Beam
 $Try W 21 \times 55 : T_x = 1140 \text{ in}^4$
 $\Delta_L = \frac{5(30 \text{ psf})(18')(\frac{31}{10})(\frac{1728}{128}) = 0.91''$
 $\frac{5(20 \text{ psf})(18')(\frac{31}{10})(\frac{1728}{1000}) = 0.91''$
 $\frac{1}{384(29,000,000)(1140 \text{ in}^4)}$
 $\Delta_L = 5(\frac{124 \text{ page}}{1000,000)(1140 \text{ in}^4)} = 0.91''$
 $\frac{1}{384(29,000,000)(1140 \text{ in}^4)}$
 $\Delta_L = \frac{5(124 \text{ page})(18 + 4)(\frac{31}{10})^4(1728)}{384(29,000,000)(1140 \text{ in}^4)} = 1.4'''$

Appendix B: Longspan Steel Joists

Table B.1

Table from the United Steel Deck Design Manual and Catalog of Products: Determination of steel form deck, 22 gage UF1X.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 dent		SECTI	ON PROPE	RTIES			ASD					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Metal Thick	ness V	/t. I,	S,	S,	v	R,	R ₂	٥V	öR,	φR ₂	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	G	age Incl	nes (p	sf) (in.	4) (in.3) (in.3)) (lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		26 0.01	179 1	00 0.03	9 0.066	0.066	2009	309	396	2387	485	715	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	24 0.02	39 1.	25 0.05	6 0.096	6 0.096	2906	491	629	3310	731	875	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	22 0.02	295 1.	50 0.07	2 0.127	0.127	0.127 3625 715		1349	4073	992	1808	
$ \begin{array}{c} \mbox{UF1X} \\ \mbox{UF1X} \\ \mbox{UF1X} \\ \mbox{UF2} \\ U$	1	20 0.03	358 2	80.0 00	8 0.163	3 0.163	4338	971	2181	4927	1339	3013	
shear stud. span span Condition Syan Span Span Condition Syan Condition <th co<="" th=""><th></th><th>UF1X</th><th></th><th>×</th><th></th><th>27</th><th>7" cover</th><th>-1%" 🕞</th><th></th><th>The bottom flange can accept a 34</th><th></th><th></th></th>	<th></th> <th>UF1X</th> <th></th> <th>×</th> <th></th> <th>27</th> <th>7" cover</th> <th>-1%" 🕞</th> <th></th> <th>The bottom flange can accept a 34</th> <th></th> <th></th>		UF1X		×		27	7" cover	-1%" 🕞		The bottom flange can accept a 34		
Grage Condition 3'0" 3'6" 4'0" 4'6" 5'0" 5'6" 6'0" 6'6" 7'0" 26 Single Double 176/126 129/80 99/53 78/37 63/27 52/21 44/16 37/12 32/10 24 Double Triple 216/238 159/150 122/101 97/71 79/51 65/39 55/30 47/23 40/19 24 Double Double 256/182 188/114 144/77 114/54 92/39 76/29 64/23 55/18 47/14 314/342 232/215 178/144 141/101 114/74 95/56 80/43 68/34 59/27 27 Single Double 334/552 246/354 189/237 150/167 121/121 100/91 84/70 72/55 62/48 20 Double 71/687 145/285 319/180 245/120 193/85 155/67 105/55 90/43 77/35 20 Double 427/687 315/433 242/290			Span			- 4½" Pitch	at Produce:	s I/180 Defl	ection, psf	shear stud. approx.	scale: 1½" =	1'0"	
26 Single Double 176/126 129/80 99/53 78/37 63/27 52/21 44/16 37/12 32/10 26 Tiple Tiple 216/238 159/150 122/101 97/71 79/51 65/39 55/30 47/23 40/19 244 Single Double 256/182 188/114 144/77 114/54 92/39 76/29 64/23 55/18 47/14 234 Double 253/437 188/174 144/77 114/54 92/39 76/29 64/23 55/18 47/14 200 Single 253/437 188/17 191/98 151/69 122/50 101/38 85/29 72/23 62/18 200 Single 339/233 249/147 191/98 151/69 122/50 101/38 85/29 72/23 62/18 200 Single 339/233 249/147 191/98 151/69 122/50 101/38 85/29 72/23 62/18 200 Single 339/233		Gage	Conditio	n <u>3'0"</u>	3'6"	4'0"	4'6"	5'0"	5'6"	6'0"	6'6"	7'0"	
26 Double 174 / 304 128 / 192 98 / 128 78 / 90 63 / 66 52 / 49 44 / 38 37 / 30 32 / 24 24 Single 256 / 182 188 / 114 144 / 177 114 / 54 92 / 39 76 / 29 64 / 23 55 / 30 47 / / 23 40 / 19 244 Double 256 / 182 188 / 114 144 / 177 114 / 54 92 / 39 76 / 29 64 / 23 55 / 18 47 / 14 Double 256 / 182 188 / 114 144 / 177 114 / 54 92 / 94 76 / 71 64 / 55 54 / 43 47 / 134 220 Single 339 / 233 249 / 147 191 / 98 151 / 69 122 / 50 101 / 38 85 / 29 72 / 23 62 / 18 Double 334 / 562 246 / 354 189 / 237 150 / 167 121 / 121 100 / 91 84 / 70 72 / 255 62 / 44 20 Single 236 / 285 39 / 301 / 227 239 / 189 155 / 140 155 / 140 105 / 53 90 / 42 20 <td></td> <td></td> <td>Single</td> <td>176 / 126</td> <td>129/80</td> <td>99/53</td> <td>78/37</td> <td>63/27</td> <td>52/21</td> <td>44 / 16</td> <td>37/12</td> <td>32/10</td>			Single	176 / 126	129/80	99/53	78/37	63/27	52/21	44 / 16	37/12	32/10	
Triple 216/238 159/150 122/101 97/71 79/51 65/39 55/30 47/23 40/19 24 Single Double 256/182 188/114 144/77 114/54 92/39 76/29 64/23 55/18 47/14 274 Double 253/437 186/275 143/184 113/130 92/94 76/71 64/55 54/43 47/14 201 Single 339/233 249/147 191/98 151/95 122/50 101/38 85/29 72/23 62/18 20 Double 334/562 246/354 189/237 150/167 121/121 100/91 84/70 72/55 62/14 20 Single 334/562 246/354 189/237 150/167 121/121 100/91 84/70 72/55 62/144 20 Single 334/562 246/354 189/237 150/167 121/121 100/91 84/70 72/55 62/144 20 Single Double 315/283		26	Double	174/304	128 / 192	98 / 128	78/90	63/66	52/49	44/38	37/30	32/24	
24 Single Double 256 / 182 253 / 437 188 / 114 188 / 125 144 / 177 143 / 184 113 / 130 113 / 130 92 / 94 76 / 29 64 / 23 55 / 18 47 / 14 20 Single Double 233 / 233 249 / 147 113 / 130 92 / 94 76 / 71 64 / 55 54 / 43 47 / 14 22 Single Double 334 / 562 249 / 147 191 / 198 151 / 167 121 / 121 100 / 91 84 / 70 72 / 23 62 / 18 200 Single Triple 413 / 44 400 / 277 235 / 186 186 / 130 151 / 95 125 / 71 105 / 55 90 / 43 77 / 35 200 Single Double 435 / 285 319 / 180 245 / 120 193 / 85 156 / 62 129 / 46 109 / 36 93 / 28 80 / 22 200 Single Double 427 / 687 315 / 433 242 / 290 192 / 204 155 / 148 129 / 111 108 / 86 93 / 28 80 / 22 216 Double 279 / 126 205 / 80 157 / 53 124 / 37 100 / 27 8			Triple	216/238	159/150	122/101	97/71	79/51	65/39	55/30	47/23	40/19	
24 Double Triple 253 / 437 186 / 275 143 / 184 113 / 130 92 / 94 76 / 71 64 / 55 54 / 43 47 / 34 22 Single Double 334 / 562 246 / 354 189 / 237 150 / 167 121 / 121 100 / 91 84 / 70 72 / 23 62 / 18 200 Single Double 334 / 562 246 / 354 189 / 237 150 / 167 121 / 121 100 / 91 84 / 70 72 / 25 62 / 14 200 Single Double 414 / 440 306 / 277 235 / 186 186 / 130 151 / 95 125 / 71 105 / 55 90 / 43 77 / 35 301 Single Double 415 / 485 319 / 180 246 / 120 193 / 85 156 / 62 129 / 46 109 / 36 93 / 28 80 / 22 200 Single Double 427 / 687 315 / 433 242 / 290 192 / 204 155 / 148 129 / 111 108 / 86 92 / 68 80 / 54 21 Single Double 279 / 126 205 / 80 157 / 53 124 / 37 100 / 27 83		04	Single	256 / 182	188 / 114	144 / 77	114 / 54	92 / 39	76/29	64/23	55 / 18	47 / 14	
Triple 314/342 232/215 178/144 141/101 114/74 95/56 80/43 68/34 59/27 22 Single Double 339/233 249/147 191/98 151/69 122/50 101/38 85/29 72/23 62/18 20 Single Triple 334/562 246/354 189/237 150/167 121/121 100/91 84/70 72/55 62/44 20 Single Double 413/440 306/277 235/186 186/130 151/95 125/71 105/55 90/43 77/35 20 Single Double 427/687 315/433 242/290 192/204 155/148 129/111 108/86 92/68 80/54 217/23 Bingle 279/126 205/80 157/53 124/37 100/27 83/21 70/16 59/12 51/10 Double 191/304 163/192 143/128 123/90 99/66 82/49 69/38 59/30 51/24 244 Double 233/437 200/27	0	24	Double	253 / 437	186 / 275	143 / 184	113 / 130	92/94	76/71	64 / 55	54/43	47/34	
22 Single 339/233 249/147 191/98 151/69 122/50 101/38 85/29 72/23 62/18 24 Double 334/562 246/354 189/237 150/167 121/121 100/91 84/70 72/55 62/44 71/35 Single 414/440 306/277 235/186 186/130 151/95 125/71 105/55 90/43 77/35 20 Single 435/285 319/180 245/120 193/85 156/62 129/46 109/36 93/28 80/22 20 Double 427/687 315/433 242/290 192/204 155/148 129/111 108/86 92/68 80/54 7riple 530/538 392/339 301/227 239/159 194/116 160/87 135/67 115/53 99/42 26 Single 279/126 205/80 157/53 124/37 100/27 83/21 70/16 59/12 51/24 27/128 186/150 163/101 144/71 124/51 103/39 86/30 74/23 64/19 20 <td>S</td> <td></td> <td>Triple</td> <td>314/342</td> <td>232/215</td> <td>178 / 144</td> <td>141/101</td> <td>114 / 74</td> <td>95 / 56</td> <td>80/43</td> <td>68/34</td> <td>59/27</td>	S		Triple	314/342	232/215	178 / 144	141/101	114 / 74	95 / 56	80/43	68/34	59/27	
2.2 Double Triple 334/562 414/440 246/354 306/277 189/237 235/186 150/167 186/130 121/121 151/95 100/91 125/71 84/70 105/55 72/55 90/43 62/44 77/35 20 Single Double 435/285 319/180 245/120 193/85 156/62 129/46 109/36 93/28 80/22 20 Double 427/687 315/433 242/290 192/204 155/148 129/111 108/86 92/68 80/54 20 Single Triple 530/538 392/339 301/227 239/159 194/116 160/87 135/67 115/53 99/42 26 Single Double 279/126 205/80 157/53 124/37 100/27 83/21 70/16 59/12 51/10 24 Single Double 191/304 163/192 143/128 123/90 99/66 82/49 69/38 59/30 51/24 27 Single 405/182 298/114 228/77 180/54 146/39 121/29 101/23 86/18 74/14	4	00	Single	339/233	249/147	191/98	151/69	122/50	101/38	85/29	72/23	62/18	
Inple 414/440 306/277 235/186 186/130 151/95 125/71 105/55 90/43 77/35 20 Single Double 435/285 319/180 245/120 193/85 156/62 129/46 109/36 93/28 80/22 20 Double Triple 530/538 392/339 301/227 239/159 194/116 160/87 135/67 115/53 99/42 26 Single Double 279/126 205/80 157/53 124/37 100/27 83/21 70/16 59/12 51/10 26 Single Double 279/126 205/80 157/53 124/37 100/27 83/21 70/16 59/12 51/10 27 Single 205/182 298/114 228/77 180/54 146/39 121/29 101/23 86/18 74/14 20 Single 405/182 298/114 228/77 180/54 146/39 121/29 101/23 86/18 74/14 20 Single 536/233		22	Double	334 / 562	246/354	189/237	150 / 167	121 / 121	100/91	84/70	72/55	62/44	
20 Single 435/285 319/180 245/120 193/85 156/62 129/46 109/36 93/28 80/22 20 Double 427/687 315/433 242/290 192/204 155/148 129/111 108/86 92/68 80/54 26 Single 279/126 205/80 157/53 124/37 100/27 83/21 70/16 59/12 51/10 26 Double 191/304 163/192 143/128 123/90 99/66 82/49 69/38 59/30 51/24 7piple 217/238 186/150 163/101 144/71 124/51 103/39 86/30 74/23 64/19 24 Single 405/182 298/114 228/77 180/54 146/39 121/29 101/23 86/18 74/14 24 Double 233/437 200/275 175/184 156/130 140/94 120/71 101/55 86/43 74/34 27 Single 536/233 394/147 302/98 238/69 193/50 160/38 134/29 114/23 98/18			Iriple	414/440	306/277	235/186	186 / 130	151/95	125/71	105/55	90/43	77/35	
20 Double Triple 427/887 315/433 242/290 192/204 155/148 129/111 108/86 92/68 80/54 20 Single Double 279/126 205/80 157/53 124/37 100/27 83/21 70/16 59/12 51/10 20 Single Double 279/126 205/80 157/53 124/37 100/27 83/21 70/16 59/12 51/10 20 Single Double 217/238 186/150 163/101 144/71 124/51 103/39 86/30 74/23 64/19 24 Single Double 405/182 298/114 228/77 180/54 146/39 121/29 101/23 86/18 -74/14 Double 233/437 200/275 175/184 156/130 140/94 120/71 101/55 86/43 74/34 20 Single 536/233 394/147 302/98 238/69 193/50 160/38 134/29 114/23 98/18 20 Double 536/233 </td <td></td> <td>20</td> <td>Single</td> <td>435/285</td> <td>319/180</td> <td>245/120</td> <td>193/85</td> <td>156/62</td> <td>129/46</td> <td>109/36</td> <td>93/28</td> <td>80/22</td>		20	Single	435/285	319/180	245/120	193/85	156/62	129/46	109/36	93/28	80/22	
26 1101e 530/536 392/339 301/22/ 239/159 194/116 160/8/ 135/6/ 115/53 99/42 26 Single Double Triple 279/126 205/80 157/53 124/37 100/27 83/21 70/16 59/12 51/10 274 Double Triple 191/304 163/192 143/128 123/90 99/66 82/49 69/38 59/30 51/24 244 Single Double 405/182 298/114 228/77 180/54 146/39 121/29 101/23 86/18 -74/14 Double 233/437 200/275 175/184 156/130 140/94 120/71 101/55 86/43 74/34 Triple 265/342 227/215 199/144 177/101 159/74 145/56 125/43 107/34 92/27 20 Single 536/233 394/147 302/98 238/69 193/50 160/38 134/29 114/23 98/18 20 Single 536/233 394/14		20	Double	42//08/	315/433	242/290	192/204	155/148	129/111	108/86	92/68	80/54	
26 Single Double Triple 2/9/126 205/80 15/753 124/37 100/27 83/21 70/16 59/12 51/10 26 Double Triple 191/304 163/192 143/128 123/90 99/66 82/49 69/38 59/30 51/24 274 Single Double 217/238 186/150 163/101 144/71 124/51 103/39 86/30 74/23 64/19 244 Single Double 233/437 200/275 175/184 156/130 140/94 120/71 101/23 86/18 -74/14 Double 233/437 200/275 175/184 156/130 140/94 120/71 101/55 86/43 74/34 Triple 265/342 227/215 199/144 177/101 159/74 145/56 125/43 107/34 92/27 Single Single 536/233 394/147 302/98 238/69 193/50 160/38 134/29 114/23 98/18 Double 482/562 385/354			Thple	5307538	392/339	301/22/	239/159	194/116	160/8/	135/6/	115/53	99/42	
20 Double Triple 191/304 163/192 143/128 123/90 99/66 82/49 69/38 59/30 51/24 217/238 186/150 163/101 144/71 124/51 103/39 86/30 74/23 64/19 24 Single Double 405/182 298/114 228/77 180/54 146/39 121/29 101/23 86/18 -74/14 Double 233/437 200/275 175/184 156/130 140/94 120/71 101/55 86/43 74/34 Triple 265/342 227/215 199/144 177/101 159/74 145/56 125/43 107/34 92/27 Single 536/233 394/147 302/98 238/69 193/50 160/38 134/29 114/23 98/18 Double 482/562 385/354 297/237 235/167 191/121 158/91 133/70 113/55 98/44 Triple 548/440 470/277 368/186 292/130 238/95 197/71 <th< td=""><td></td><td>26</td><td>Single</td><td>2/9/126</td><td>205/80</td><td>157/53</td><td>124/37</td><td>100/27</td><td>83/21</td><td>70/16</td><td>59/12</td><td>51/10</td></th<>		26	Single	2/9/126	205/80	157/53	124/37	100/27	83/21	70/16	59/12	51/10	
Participate 217/238 186/150 163/101 144//1 124/51 103/39 86/30 74/23 64/19 24 Single Double 405/182 298/114 228/77 180/54 146/39 121/29 101/23 86/18 -74/14 Double 233/437 200/275 175/184 156/130 140/94 120/71 101/55 86/43 74/34 265/342 227/215 199/144 177/101 159/74 145/56 125/43 107/34 92/27 20 Single 536/233 394/147 302/98 238/69 193/50 160/38 134/29 114/23 98/18 Double 482/562 385/354 297/237 235/167 191/121 158/91 133/70 113/55 98/44 Triple 548/440 470/277 368/186 292/130 238/95 197/71 166/55 141/43 122/35 20 Single 688/285 506/180 387/120 306/85 248/62		20	Double	191/304	163/192	143/128	123/90	99/66	82/49	69/38	59/30	51/24	
24 Single 405/182 298/114 228/7/ 180/54 146/39 121/29 101/23 86/18 -74/14 Double 233/437 200/275 175/184 156/130 140/94 120/71 101/55 86/43 74/34 265/342 227/215 199/144 177/101 159/74 145/56 125/43 107/34 92/27 20 Single 536/233 394/147 302/98 238/69 193/50 160/38 134/29 114/23 98/18 Double 482/562 385/354 297/237 235/167 191/121 158/91 133/70 113/55 98/44 Triple 548/440 470/277 368/186 292/130 238/95 197/71 166/55 141/43 122/35 20 Single 688/285 506/180 387/120 306/85 248/62 205/46 172/36 147/28 126/22 Double 666/687 493/433 380/290 301/204 245/148 203/111 171/86 146/68 126/54 100/16 666/687 49			Circula	217/238	186 / 150	163/101	144 / /1	124 / 51	103/39	86/30	74/23	64/19	
24 Double 233/43/ 200/2/5 1/5/184 156/130 140/94 120/71 101/55 86/43 74/34 20 Triple 265/342 227/215 199/144 177/101 159/74 145/56 125/43 107/34 92/27 21 Single 536/233 394/147 302/98 238/69 193/50 160/38 134/29 114/23 98/18 22 Double 482/562 385/354 297/237 235/167 191/121 158/91 133/70 113/55 98/44 230 Single 688/285 506/180 387/120 306/85 248/62 205/46 172/36 147/28 126/22 20 Single 688/285 506/180 387/120 306/85 248/62 205/46 172/36 147/28 126/22 20 Double 666/687 493/433 380/290 301/204 245/148 203/111 171/86 146/68 126/54 301/204 245/148 203/111 171/86 146/68 126/54 <td></td> <td>21</td> <td>Single</td> <td>405/182</td> <td>298/114</td> <td>228/11</td> <td>180/54</td> <td>146/39</td> <td>121/29</td> <td>101/23</td> <td>86/18</td> <td>- 74 / 14</td>		21	Single	405/182	298/114	228/11	180/54	146/39	121/29	101/23	86/18	- 74 / 14	
22 Single Double 536/233 482/562 394/147 385/354 302/98 297/237 238/69 235/167 193/50 191/121 160/38 134/29 134/29 114/23 98/18 20 Single Double 536/233 482/562 385/354 297/237 297/237 235/167 191/121 158/91 133/70 113/55 98/44 20 Single Triple 688/285 506/180 387/120 306/85 248/62 205/46 172/36 147/28 126/22 30 Double 666/687 493/433 380/290 301/204 245/148 203/111 171/86 146/68 126/54 Triple 821/538 610/339 471/237 374/150 304/145 252/87 216/77	0	24	Double	233/43/	200/2/5	1/5/184	156/130	140/94	120/71	101/55	86/43	74/34	
22 Single 536/233 394/14/ 302/98 238/69 193/50 160/38 134/29 114/23 98/18 Double 482/562 385/354 297/237 235/167 191/121 158/91 133/70 113/55 98/44 Triple 548/440 470/277 368/186 292/130 238/95 197/71 166/55 141/43 122/35 20 Single 688/285 506/180 387/120 306/85 248/62 205/46 172/36 147/28 126/22 Double 666/687 493/433 380/290 301/204 245/148 203/111 171/86 146/68 126/54 Triple 821/538 610/339 471/237 374/159 204/116 252/87 216/77 166/54	2		Cincle	205/342	22//215	199/144	1///101	159/74	145/56	125/43	107/34	92/27	
200 385/354 29/123/ 235/16/ 191/121 158/91 133/70 113/55 98/44 Triple 548/440 470/277 368/186 292/130 238/95 197/71 166/55 141/43 122/35 20 Single 688/285 506/180 387/120 306/85 248/62 205/46 172/36 147/28 126/22 Double 666/687 493/433 380/290 301/204 245/148 203/111 171/86 146/68 126/54 Triple 821/538 610/339 471/237 374/159 304/146 252/87 243/67 404/53	Ξ.	22	Double	530/233	394/14/	302/98	238/69	193/50	160/38	134/29	114/23	98/18	
20 Single 688/285 506/180 387/120 306/85 248/62 205/46 172/36 147/28 126/22 Double 666/687 493/433 380/290 301/204 245/148 203/111 171/86 146/68 126/54 Triple 821/538 610/339 471/227 374/159 204/146 252/87 242/67 404/52 457/40		22	Triple	402/502	385/354	29/123/	235/16/	191/121	158/91	133/70	113/55	98/44	
20 Double 666/687 493/433 380/290 301/204 245/148 203/111 171/86 146/68 126/54 Triple 821/538 610/339 471/227 374/159 204/116 252/87 242/67 401/59 457/49	Ļ		Single	548/440	4/0/2//	308/186	292/130	238/95	19///1	106/55	141/43	122/35	
Triple 821/538 610/330 471/297 374/150 204/116 252/87 240/67 404/50 457/40		20	Doublo	666 / 697	103 / 132	307/120	300/85	240/02	205/46	172/30	14//28	126/22	
		20	Triple	821/538	610/330	171/207	371/204	245/148	203/111	212/67	140/08	120/54	

Appendix B: Longspan Steel Joists

Table B.2

Table from the CMC Joist and Deck Catalog: Determination of longspan steel joist size, 20LH09 or 24LH08.

			y			L	R	}	D							1		H	
	Dan _ 541	Base	STAND d on a 50 ks	ARD LO	AD TA um Yi	BLE F	OR LO	NGSP	AN ST	EEL J	OISTS	, LH-S Is per l	ERIES	Foot (plf)				-
		1	22-24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
20LH02	10	20	11300	663 306	655 303	646 298	615 274	582 250	547 228	516 208	487 190	460 174	436 160	412 147	393 136	373 126	355 117	337 108	322 101
20LH03	11	20	12000	703	694 333	687 317	678 302	651 280	621 258	592 238	558 218	528 200	499 184	474 169	448 156	424 143	403 133	382 123	364 114
20LH04	12	20	14700	861 428	849 406	837 386	792 352	744 320	700 291	660 265	624 243	589 223	558 205	529 189	502 174	477 161	454 149	433 139	412 129
20LH05	14	20	15800	924 459	913 437	903 416	892 395	856 366	816 337	769 308	726 281	687 258	651 238	616 219	585 202	556 187	529 173	504 161	481 150
20LH06	15	20	21100	1233 606	1186 561	1144 521	1084 477	1018 427	952 386	894 351	840 320	790 292	745 267	703 246	666 226	631 209	598 192	568 178	541 165
20LH07	17	20	22500	1317 647	1267 599	1221 556	1179 518	1140 484	1066 438	1000 398	940 362	885 331	834 303	789 278	745 256	706 236	670 218	637 202	606 187
20LH08	19	20	23200	1362 669	1309 619	1263 575	1219 536	1177 500	1140 468	1083 428	1030 395	981 365	931 336	882 309	837 285	795 262	754 242	718 225	685 209
20LH09	21	_ 20	25400	1485 729	1429 675	1377 626	1329 581	1284 542	1242 507	1203 475	1167 437	1132 399	1068 366	1009 336	954 309	904 285	858 264	816 244	775 227
20LH10	23	20	27400	1602 786	1542 724	1486 673	1434 626	1386 585	1341 545	1297 510	1258 479	1221 448	1186 411	1122 377	1060 346	1005 320	954 296	906 274	862 254

		Ba	STANDA sed on a 50 ks	ARD LO	DAD T/ num Y	ABLE I	FOR LO	ONGSI	DAN ST	FEEL J	OISTS	, LH-S	ERIES	Foot (olf)				
Joist Designation	Approx. Wt in Lbs. Per Linear Ft.	Depth in inches	SAFELOAD* in Lbs. Between	lista	CLEAR SPAN IN FEET														
	(Joists only)	1	28-32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
24LH03	11	24	17250	513 235	508 226	504 218	484 204	460 188	439 175	418 162	400 152	382	366 132	351 124	336 116	322 109	310 102	298 96	286
24LH04	12	24	21150	628 288	597 265	568 246	540 227	514 210	490 195	468 182	447 169	427 158	409 148	393 138	376 130	361 122	346 114	333 107	321
24LH05	13	24	22650	673 308	669 297	660 285	628 264	598 244	570 226	544 210	520 196	496 182	475 171	456 160	436 150	420 141	403 132	387 124	372
24LH06	16	24	30450	906 411	868 382	832 356	795 331	756 306	720	685 263	655 245	625 228	598 211	571 197	546 184	522 172	501 161	480	460
24LH07	17	24	33450	997 452	957 421	919 393	882 367	847 343	811 320	774	736 276	702	669 239	639 223	610 208	583 195	559 182	535 171	514
24LH08	18	24	35700	1060 480	1015 447	973 416	933 388	895 362	858 338	817 314	780 292	745	712	682 238	652 222	625 208	600 196	576 184	553 173
24LH09	21	24	42000	1248 562	1212 530	1177 501	1146 460	1096 424	1044	994 363	948 337	903 313	861 292	822 272	786	751	720	690 209	661
24LH10	23	24	44400	1323 596	1284 559	1248 528	1213 500	1182 474	1152	1105 406	1053	1002	955 326	912 304	873	834	799	766	735
24LH11	25	24	46800	1390 624	1350 588	1312 555	1276 525	1243 498	1210 472	1180 449	1152 418	1101 388	1051 361	1006 337	963 315	924 294	885 276	850 259	816

Appendix C: Two-Way Post-Tensioned Concrete Slab

Hand Calculations:

Loads ! pead Load (not including self weight) = 25 psf. Live load = 80 psf (corridors above the first floor.) Materials ! Concrete: Normal weight = 150 pcf. f'c = 5,000 psi f'ci = 3,000 psi Reban = 60,000 psi PT: Unbonded tendons 1/2 \$, 7- wire strands , A = 0, 153 in2. for = 270 KSi Estimated prestress losses = 15 Ksi fse = 0,70 for = 0,70 (270) - 15ksi = 174 ksi Peff = A*fre = 0,153(174ksi) = 26.6 K/tender. Preliminary Slab thickness: <u>L</u>=30 Longest Span = 36' => h = 36' × 12"/# => 8.64"=> Try 9" Loading: Dead Load of Slab = 150 pefx 9" = 113 pst. Dead Load discluding Self weight = 25psf. live Load = 80 psf. Live Load Reduction per JBC 2006: KIL Slab = 1 L= Lo (0,25 + 15 Ar = 36' x 31' = 1116. L= 80 ps+ (0,25 + 15) L= 56 psf

Appendix C: Two-Way Post-Tensioned Concrete Slab

Appendix C: Two-Way Post-Tensioned Concrete Slab

Design of E/W Frame : Day nidth = 31'- 0" = 372"
Section Properties ! Design two-way slab as class U (ACI 18:3.3) Gross - cross sectional properties allowed.
A= 5.h= (372")(9") = 3348 m²
$5 = \frac{6h^2}{6} = \frac{(372)(9')^2}{6} = 5022 \text{ in}^3$
Allowable Stress for class U. • At time of jacking (Act 18.4.1)
Compression = 0,6 fci = 0,6(3,000) = 1800 psi
Tension = 3 Féi = 3 J3000 = 164.3 psi
- At service loads (Act 18.4.2(a) and 18, 3,3)
Compression = 0.45 fb = 0.45 (5000) = 2,250 psi
Tension = GJFE = 6 J5000 = 424,3 psi
Tanget load balances: Assume 0.75% of DL (self-weight) for slabs, = 0.75w0 = 0.75(113 psg) = 85 psf
Cover Requirements for 2-hour fire rating (IBC 2006) Restrained Slabs= 3/4" bottom Unrestrained slabs = 1/2" bottom, 3/4" top.
Average Are compression limits: $P_A = 125 \text{ psi} \text{ min},$ = 300 psi max,

Appendix C: Two-Way Post-Tensioned Concrete Slab

Determine actual preco	impression Stress
Pactual _ 1117.2K × 1000	334 pai > 300 psi max,
A 3348 in2	Therefore will need to use
	less tendons to prevent overstressing. Check int, span before determining hourmany less tendons to use.
Check interior spon for	re:
P= (2.627 K/H) (30')2 8 * (7"/12")	= 507 K< 1117.2F
A significantly less force	is required in the center bay.
$W_{D_{i}}^{2} = (1117.2 \text{ k})(9")(7"/i)$ 30^{2}	$\frac{1}{2}$ = 6.52 K/ft.
$Wb_i = \frac{6.52}{(1307)(31)/m}$	= 186% >> 100%
Backsolve to determine suff. avoid overstressing.	scient # of tendons to
$\frac{Wb_{i}}{Wb_{i}} = 95\%$ $Wb_{i} = 0.95($	(3.503) = 3.32 K/Ft
3, 32 K = Pacture (9") (7"/12.") Ft 302	- => Pactual = 570.5 K
Determine number of tende	ons to achieve \$70.5.k
# tendons = <u>570.5k</u> = 26-6 K/tendon	21.4 > choose 22 tendons.
Actual force of banded ,	lendons.
factural = 22(26.	(6) = 585.2 K
balanced load for end sp Weend = 585.2K (pan adjusted: 2.627 K/H) = 2.69 K/ft.

Appendix C: Two-Way Post-Tensioned Concrete Slab

Determine new precompression stress $\frac{P_{actval}}{A} = \frac{585,2 \,\text{k}}{3348 \,\text{m}^2} = 175 \,\text{poi} \quad \begin{array}{r} > 125 \,\text{psi} \,\text{min}, \, 0. \,\text{k/} \\ < 300 \,\text{psi} \,\text{max}, \, 0, \,\text{k/} \end{array}$ Check interior span: Wb: (585.2 K) (9") (""/12") = 3.41 K/FL. Woi = 3.41 K/At = 97.5% × 100% "acceptable. East - West Toterion Frame: effective prestress force, Perf = 585.2K Dead, Live, and Balancing moments were calculated Using PCA Slab Software. See Figure C.1 for results.

Appendix C: Two-Way Post-Tensioned Concrete Slab

Stage 1: Stresses in mediately after jacking
$$(0L + PT)$$

midspan stresses
 $f_{10P} = (-M_{0L} + M_{0PL}) - P$
 $f_{10P} = (-M_{0L} + M_{0PL}) - P$
 $f_{10P} = (-M_{0L} - M_{0PL}) - P$
 $F = 175psi$
 $f_{bottom} = (+M_{0L} - M_{0PL}) - P$
 $f_{10P} = 1(-123, 8 + 108, 6)(12)(1000)]/5022 n^{3} - 175psi$
 $f_{10P} = -36 - 175 = -211$ pai compression.
 $-211 pai < 0.60f_{c1} = 0.6(3000 psi) = 1800 psi : .0.8.$
 $f_{10P} = 211 - 1955 = -36 pai tension < 3176i = 164 psi .0.9.$
 $f_{10P} = 268.11 + 326.06)(12)(1000)]/corr in^{3} - 175 psi$
 $= -100.5 - 175 = -375.5 compression < 1800 psi .0.9.$
 $f_{10P} = (M_{0L} - M_{0RR})/s - P/A$
 $= (553 - 490.81)(12)(1000)/sor2 - 175 psi .0.8.$
 $f_{10P} = (M_{0L} - M_{0RR})/s - P/A$
 $= 149 - 175 = -324 psi < 1800 psi .0.98$

Appendix C: Two-Way Post-Tensioned Concrete Slab

Stage 2: Stresses at service load (DL+LL+PT) Midspan stresses: Gop = (- mol - mu + Mbal)/s - P/A Interior Span: ftop = (-123, 8 - 50, 42 + 108, 6)(12)(1000)/5022 - 175= -157 - 175 = -332 psi (C) < 2250 psi .', 0K. fbottom = +157 -175 = - 18 0: < 2250 psi = OK. Enp. Spani ftop = (368,11 - 149,92 + 326.06)(12)(1000)/5022 - M5 = - 191.97 - 175 = -367 psile) <2250 psile v. fbot = + 191.97 - 175 = 17 psile) <424 psile v. ok Support Stresses: ftop = (+ mor + mu - mbal)/s - P/A. fbot = (- MOL - MLL + Mbae)/5 - P/A ftop = (+ 553,16 + 225,29 - 490,81)(12)(1000)/5022 -175 = + 687.31 -175 = 512 psi (T) \$ 424psi .! Not good. Stress at interior support exceeds code allowed limit for tension of 61Fic therefore additional reinforcing around column is needed. Foottom = - 687.31 - 175 = - 862 (C) poi & 1800 psi .: 0K. Ultimate Strength Determine factored Moments The primary post - tensioning moments, Mis vary along the known of the span M=Pe e=0" @ ext. support e = 3,5" @ int. support (N.A. to center oftendon.) m, = (585,2K)(3,5")/12" = 171 ft-K

Appendix C: Two-Way Post-Tensioned Concrete Slab

The secondary post-tensioning moments , Msec
Msec =
$$M_{bal} - M$$
,
Msec = $490, 81 - 171 = 320$ ft - K c int. Support
Typical load combination for leftimate Strength design:
 $Mu = 1.2 M_{bl} + 1.6 M_{bl} + 1.0 Msec$
 $e Midspan : Mu = 1.2 (368,11) + 1.6(149,92) + 1.0 (320)$
 $Mu = 842 \text{ ft} - K$.
 $e Support : Mu = 1.2 (553,16) = 1.6(225,3) + 1.0 (320)$
 $= 4705 \text{ ft} - K$.
Determine minimum bonded reinforcement: to see
if a cceptable for ultimate strength design. Designing
only reinforcement for the Strill typical panel.
Bositive Mament Region:
 $E Mo \text{ positive reinforcement is reguired (Aci 18, 9, 3, 1)}$
Nequired moment Region:
 $Asimin = 0, 00075 \text{ Me}(Aci 18, 9, 3, 3)$
Int. Support:
 $Acf = momof q^{u}[60+36/2], 31'] + 12$
 $Acf = 9(33)(12) = 3564 \text{ in}^2$
 $= 2.67 \text{ in}^2 = 4 \text{ try H 4 bars because they have the
 $4baro = 2.67 \text{ in}^2 = 4 \text{ try H 4 bars}$$

Appendix C: Two-Way Post-Tensioned Concrete Slab

exterior support: Acf = max of 9" [36/2, 31] = 3348 Asmin = 0. 00095 (3348) Asmin = 2.51 in2 $H bars = \frac{2.51 \text{ m}^2}{0.2 \text{ m}^2} = 13 \text{ bars}$ (13) # 4 Top (2.60in2) - Must Span a minimum of 1/6 the clear Span on each side of support per (Acl 18.9.4,2) - Place top bars within 1.5h away from the face of the support on each side (18.9.3.3) =71,5(9") > 13.5" Check minimum reinforcement for Ultimate Strength Mn = (As fy + Aps fps) + (d - a/2) $Aps = 0.153 \text{ in }^2 \times (22 \text{ tendons})$ = 3.366 in 2 fps = fse + 10,000 + (FE'b'd) 300 Aps for slabs with L/h > 35 $\frac{36+12}{9} = 48735$ (ACI 18.7,2) fps = 174,000 +10,000 + 5000 (31)(12) 1 300 (3,306) fes = 184,000 + 1842 d $\alpha = \frac{Asfy + Apsfps}{(0.85 f (a,xb))}$ C Supports ! d= 9"-3/4"-1/4" = 8" fps = 184,000 + 1842 (8) fps = 198, 736 psi

Appendix C: Two-Way Post-Tensioned Concrete Slab

$a = (2.80 \text{ in}^2)(60 \text{ ksi}) + (3,366 \text{ in}^2)(198.736 \text{ ksi})$
a= 0,53
$ \phi m_n = 0, 9 \left[(2, 80) (60 \times 5i) + (3, 366) (198, 736) \times \left[8 - \frac{0.53}{2} \right]^2 \\ 12 $
ØMn = 485,5 ft-K < 705 ft-K
* Reinforcement for ultimate strength requirements governs.
Determine Asregia:
$705 = 0.9 \left[A_{\text{Sread}} \left(60 \text{ ksi} \right) + 3.366 \left(198.736 \right) \right] \left(7.735 \right)$
Asregid = 9.1 in ² . Try a larger bar size.
Using #8 bars =7 As = 0.79 in ²
$\# bars = 9.1m^2 = 12 bars = 9.48m^2$
(12)#8 Top @ Interior Support)
To use same size bar for the exterior support,
$(13) # 4 \longrightarrow 2.67 \text{ m}^2 \text{ regid} = 4 \text{ bars.}$ 0.79 m^2
(4) #8 Top @ Exterior Support

NOTE:

The typical 36'x31' bay was only designed in the East/West direction for the preliminary analysis to give a rough idea of the feasibility of using post-tensioned design for the building.

FINAL DESIGN: Slab: 9″Two-way post-tensioned slab

Tendons: (22) 1/2" diameter, 7-wire strands, banded tendons spanning the E/W frame Effective prestress force = 585.2 kips

Mild Steel Reinforcing: (12)#8 top at interior support of typical bay (4) #8 top at exterior support of typical bay

Page Cll

Appendix C: Two-Way Post-Tensioned Concrete Slab

Figure C.1

Moment Diagrams computed using PCA Slab software for use in post-tensioned slab design

Page D1

Appendix D: Precast Hollow-Core Concrete Plank

Hand Notes: Hollow-core plank design

From the 6th Edition PCI Handbook : Hollow-core concrete Plank design: For topped members a superimposed dead load of 15 psf 15 assumed in the Safe load table. Live Load = 80 psf. { For a total service load = 95 psf. S.I. Deadload = 15 psf Analyzing the 36' span with a service load of 95 psf => Choose 4'-0" × 10" normal weight hollow - core planks => with a 2" normal weight topping, Strand designation code = 68-5 <−36' span-Total depth of system = 12" 31 ** 4'-0"

Page D2

Appendix D: Precast Hollow-Core Concrete Plank

From PCI Handbook 6th Edition:

Figure D.1

Table D.1

Table of safe superimposed service load (psf) and camber (in.)

2 in. Normal Weight Topping

4HC10 + 2

Strand													S	pan,	ft							-					
Code	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46
48-S	308 0.3 0.3	287 0.3 0.3	256 0.3 0.3	228 0.3 0.2	204 0.3 0.2	183 0.3 0.2	165 0.3 0.1	148 0.3 0.1	133 0.3 0.0	119 0.2 -0.1	107 0.2 -0.2	96 0.2 -0.3	86 0.1 -0.1	74	63 6	52 -0.1 -1.0	43 -0.2 -1.2	34 -0.3 -1.4	26 -0.4 -1.7								
58-S	317 0.4 0.4	298 0.4 0.4	282 0.4 0.4	267 0.5 0.4	252 0.5 0.4	237 0.5 0.4	219 0.5 0.4	198 0.5 0.3	180 0.5 0.3	163 0.5 0.2	148 0.5 0.1	134 0.4 0.0	12 0. –0.	0.	5	80 0.2 -0.5	69 0.2 -0.7	59 0.1 –0.9	50 0.0 -1.2	41 0.1 1.5	33 -0.3 -1.8	26 -0.4 -2.1					
68-S	326 0.5 0.5	307 0.5 0.6	291 0.6	273 0.6	258 0.6	246 0.7 0.6	234 0.7	222 0.7 0.6	212 0.7 0.5	202 0.7 0.5	188 0.7 0.4	171 0.7 0.4	15 0.7 0.3	-U. 0.7 0.2	0.6 0.0	108 0.6 -0.1	96 0.5 -0.3	84 0.5 -0.5	74 0.4 -0.7	64 0.3 -0.9	55 0.2 -1.2	46 0.1 -1.5	38 -0.1 -1.8	31 -0.2 -2.2			
78-S	335 0.6 0.7	313 0.7 0.7	297 0.7	279 0.7	267 0.8	252 0.8	240 0.9	228 0.9	218 0.9 0.8	208 0.9	196 0.9 0.7	189 1.0 0.7	181 1.0 0.6	165 1.0 0.5	150 0.9 0.4	135 0.9 0.3	122 0.9 0.2	109 0.8 0.0	97 0.8 -0.2	86 0.7 -0.4	76 0.6 -0.6	67 0.5 –0.9	58 0.4 -1.2	50 0.3 -1.6	42 0.1 -1.9	35 0.0 -2.3	28 -0.2 -2.8
88-S	344 0.7 0.8	322 0.8 0.8	306 0.8 0.9	288 0.9 0.9	273 0.9 1.0	258 1.0 1.0	246 1.0 1.0	234 1.1 1.0	221 1.1 1.0	211 1.2 1.0	202 1.2 1.0	195 1.2 1.0	184 1.2 0.9	178 1.2 0.9	172 1.2 0.8	158 1.2 0.7	144 1.2 0.6	130 1.2 0.4	118 1.2 0.3	107 1.1 0.1	96 1.1 -0.1	87 1.0 0.3	77 0.9 -0.6	68 0.8 -0.9	60 0.7 –1.3	52 0.5 -1.6	44 0.3 -2.0

Strength is based on strain compatibility; bottom tension is limited to $7.5\sqrt{f'_c}$; see pages 2–7 through 2–10 for explanation.

Appendix D: Precast Hollow-Core Concrete Plank

Hand Calculation: Design of supporting beams

Design of beams supportin	ng hollow-core concrete Planks
Weight of 4'-0" x 10" N.W.	concrete plank w/2" topping = 370 p.H.
* 36'-0"	- W= 370.16 + 1 = 92.5ps
+-1====================================	= T + fe 4ft
	28'-8" WSI.O. = 25 psf
BEAM D	-T + WLive = 80 psf.
	Reduced = 56 pst
2	(from post-tension calos)
	31'-0" Load comb.
N/	$w_n = 1.20 + 1.6 L.$
14 - 8.00	$T + W_{1} = 1.2(92.5 + 25) + 1.6(56)$
Deam (6)	Wu= 230.6 psf.
	- 20'-0"
H=4	-ï /
Size Beam @	AISC 13th Edition
Trib. width = $(28'-8'' + 31'-0'')/2 = 20$	1.8 ft. → Steel Manual → Table 3-2
Mu = (2 30.6 psf) (29.8 ft) (36')	$= 11155 ft - K \qquad 11 - 31' > 21 Y' f Mint 1$
8	Table 3-10:
In Q Han in the	Lightest = W 24×176
beam () W24× 116 or W18×	$[92] Least Depth = W18 \times 192$
Size Beam B	
Trib. width = (31'-0" + 20'-0")/2 = 25.	.5ft. Table 3-2
	=> choose W30×90 4mp= 1060
$M_{\rm H} = \frac{(230.6 \text{psf})(25.5')(36')^2}{8} =$	953 ft-K Lb = 36' > 20,9':, Must use Table 3-10;
	Most = W27× 146
Beam (B) W27×146	economical =

Page D4

Appendix D: Precast Hollow-Core Concrete Plank

Hand Calculation: Supporting beam deflection check:

$$\Delta_{18\times192} = 5(56psf + 0.9.8)(36)^{4}(1728)^{4}$$

$$(Lve) = 384(29,000,000)(3870)$$

$$D_{18\times192} = 0.59^{4} < 1.2 DL max : 0K$$

$$\Delta_{18\times192} = \frac{5(81psf \times 29.8)(36)^{4}(1728)}{364(29,000,000)(3870)}$$

$$\Delta_{18\times192} = 0.82^{4} < 1.8^{4} Defted max$$

$$D e flection of Beam (B) Supporting the South end of the hollow- (ore concrete Planks.)$$

$$\Delta_{18\times194} = 5(56 + 25.5R)(36)^{4}(1728)$$

$$\Delta_{18\times194} = 0.33^{4} < 1.2^{4} \Delta_{17}max : 0.K.$$

$$\Delta_{18\times194} = 5(81 \times 25.5)(36)^{4}(1728)$$

$$\Delta_{18\times194} = 0.48^{4} < 1.8^{4} DT max : 0.K.$$

Page El

Appendix E: Cost Summary

A rough cost per square foot of material estimate for the typical bay was determined using a combination of RSMeans Assemblies Cost Data 2009 and RSMeans Cost Works Online.

System cost summary:

		Material (\$/s.f.)	Total (\$/s.f)
Steel Composite: Composite beams, deck,	and slab	24.00	31.35
Longspan Steel Joists: Steel joists, beams, and	slab	19.00	25.45
Two-Way Post-Tensioned Concr Cast-in-place (large job)	rete Slab: 9 \$490.00/c.y. \$848.00/c.y.	13.61	23.56
Precast Hollow-Core Concrete Precast plank Supporting W16x31 bea	Plank: \$10.08/sf \$11.54/sf ums \$37.50/If \$41.84/If	12.70	23.95